

Percy Liang

UCI Reproducibility Symposium — September 22, 2020

The current research process

Previous methodNew methodDataset 188% accuracy92% accuracy

	Previous method	New method
Dataset 1	88% accuracy	92% accuracy
Dataset 2	72% accuracy	77% accuracy


	Previous method	New method
Dataset 1	88% accuracy	92% accuracy
Dataset 2	72% accuracy	77% accuracy
Dataset 3	?	?

	Previous method	New method
Dataset 1	88% accuracy	92% accuracy
Dataset 2	72% accuracy	77% accuracy
Dataset 3	?	?
Dataset 4	?	?

. . .

. . .

. . .

Step 1: come up with a good idea

Step 1: come up with a good idea

Step 2: execute on it

• Obtain data, clean it, convert between formats

Step 1: come up with a good idea

Step 2: execute on it

- Obtain data, clean it, convert between formats
- Try to reproduce results from previous work, email authors

Step 1: come up with a good idea

Step 2: execute on it

- Obtain data, clean it, convert between formats
- Try to reproduce results from previous work, email authors
- Run experiments with different versions, keep track of provenance

Step 1: come up with a good idea

Step 2: execute on it

- Obtain data, clean it, convert between formats
- Try to reproduce results from previous work, email authors
- Run experiments with different versions, keep track of provenance

Tradeoff?

efficiency

reproducibility

Folk wisdom: reproducibility slows down research.

Tradeoff?

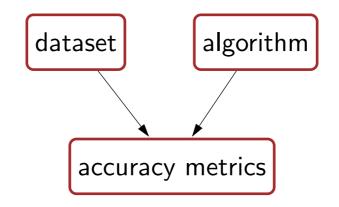
Folk wisdom: reproducibility slows down research.

Our claim: reproducibility accelerates research (with the right tool).

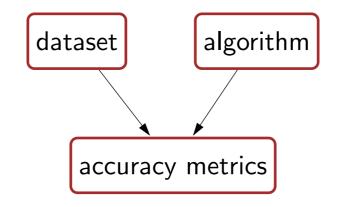
MLcomp.org (2008)

MLcomp is a free website for **objectively comparing** machine learning programs across various datasets for multiple problem **domains**.

Do a comprehensive evaluation of your new algorithm. Upload your program and run it on existing datasets. Compare the results with those obtained by other programs.

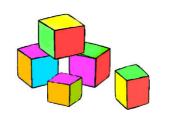

Find the best algorithm (program) for your dataset.

Upload your dataset and run existing programs on it to see which one works best.


MLcomp paradigm

MLcomp paradigm

MLcomp paradigm



Problem: too rigid, doesn't help with the efficiency problem

CodaLab Worksheets (2013-present)

Run your machine learning experiments in the cloud. Manage them in a digital lab notebook. Publish them so other researchers can reproduce your results.

Bundles

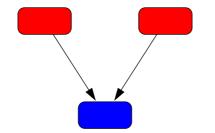
Worksheets

8

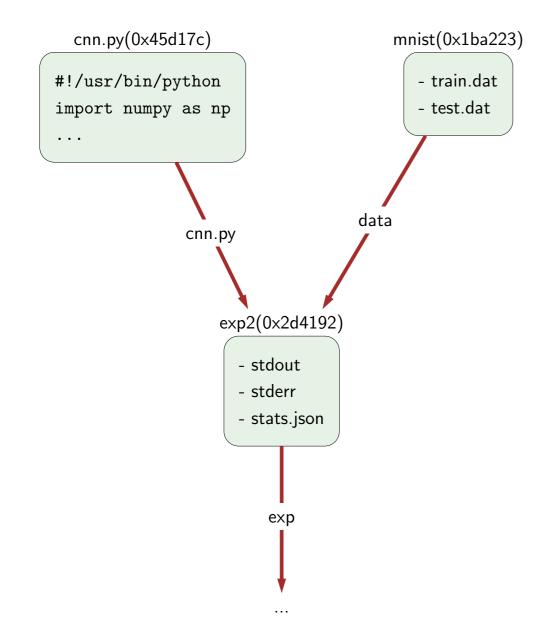
Bundle: an **arbitrary** file/directory (code or data or results)

0x191aad8fa0ae4741b3123b15a8d59efa

Uploaded by user (code or data):



Uploaded by user (code or data):



Derived by running an **arbitrary** command:

Bundles

Search for existing code and data:

\$ cl search mnist

Search for existing code and data:

\$ cl search mnist

Upload new code or data:

\$ cl upload cnn.py

Search for existing code and data:

\$ cl search mnist

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Search for existing code and data:

```
$ cl search mnist
```

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

\$ cl cat exp2/stdout

Search for existing code and data:

```
$ cl search mnist
```

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

```
$ cl cat exp2/stdout
```

Manage runs:

```
$ cl kill exp2; cl rm exp2
```


Search for existing code and data:

```
$ cl search mnist
```

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

```
$ cl cat exp2/stdout
```

Manage runs:

\$ cl kill exp2; cl rm exp2

Run an entire pipeline with a different dataset or newer version of your code:

\$ cl mimic mnist exp2 cifar -n exp3

Search for existing code and data:

```
$ cl search mnist
```

Upload new code or data:

\$ cl upload cnn.py

Run experiments with arbitrary commands:

\$ cl run :cnn.py data:mnist "python cnn.py data/train.dat data/test.dat"

Look at output of runs:

```
$ cl cat exp2/stdout
```

Manage runs:

\$ cl kill exp2; cl rm exp2

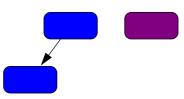
Run an entire pipeline with a different dataset or newer version of your code:

\$ cl mimic mnist exp2 cifar -n exp3

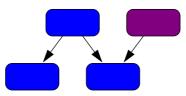
Copy from one CodaLab instance to another:

\$ cl add bundle mnist stanford::pliang-demo main::pliang-demo

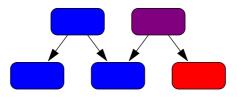
Real-world problems require efforts of entire community


Real-world problems require efforts of entire community

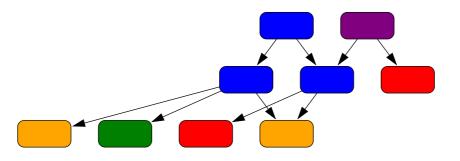
Modularity


Real-world problems require efforts of entire community

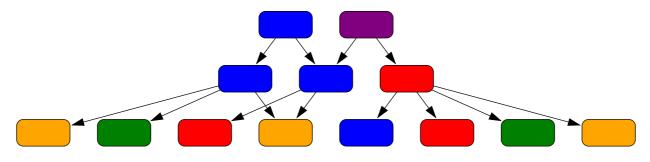
Modularity


Real-world problems require efforts of entire community

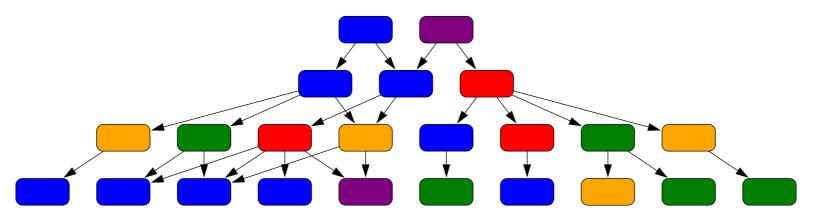
Modularity



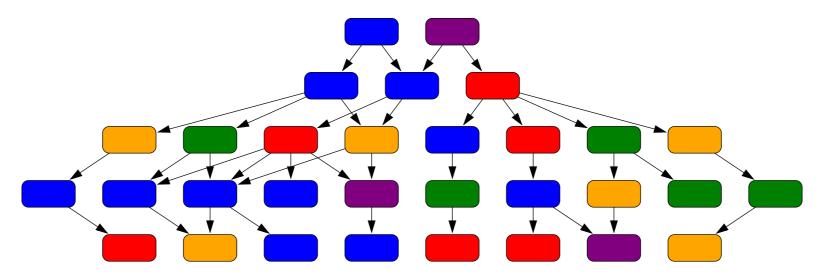
Real-world problems require efforts of entire community



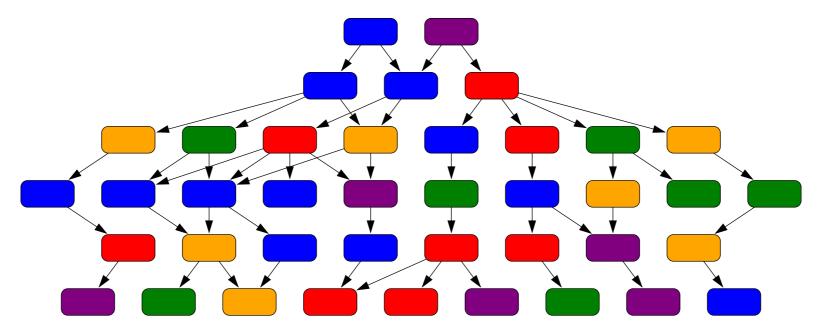
Real-world problems require efforts of entire community



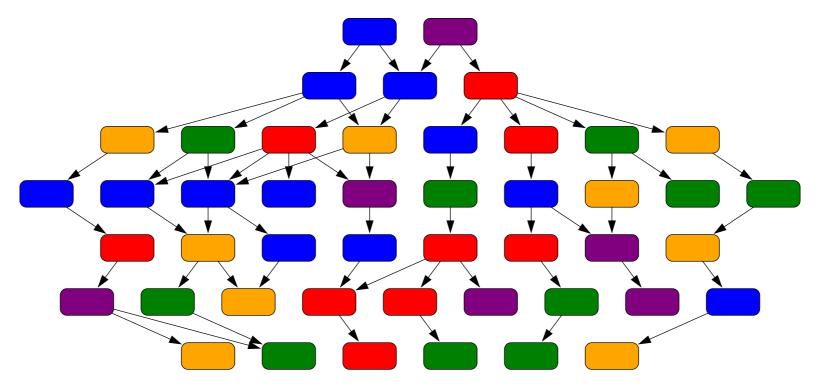
Real-world problems require efforts of entire community



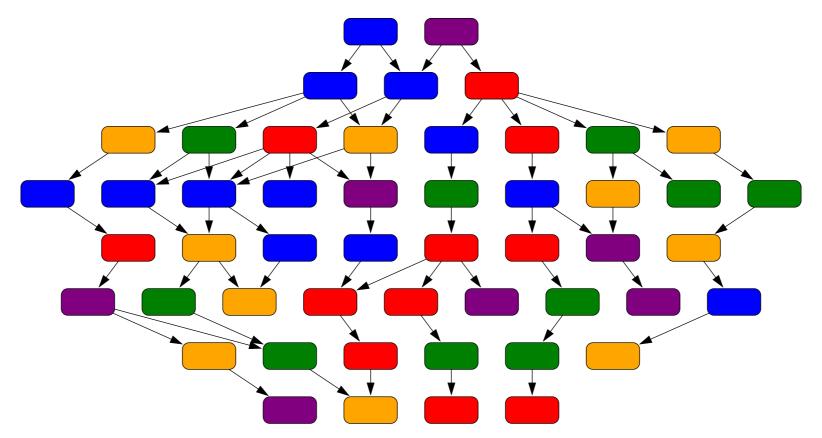
Real-world problems require efforts of entire community



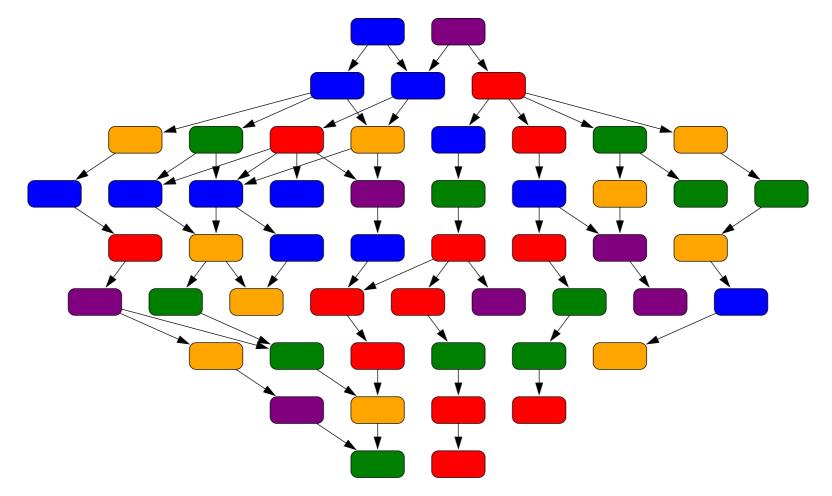
Real-world problems require efforts of entire community



Real-world problems require efforts of entire community

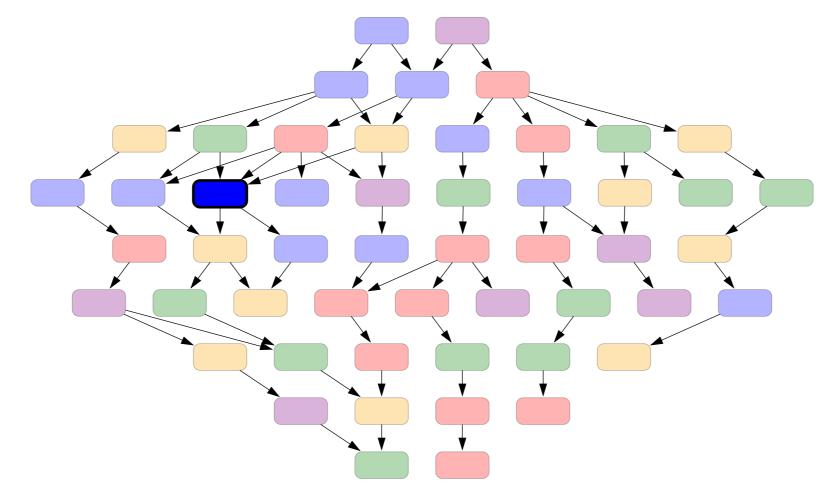


Real-world problems require efforts of entire community

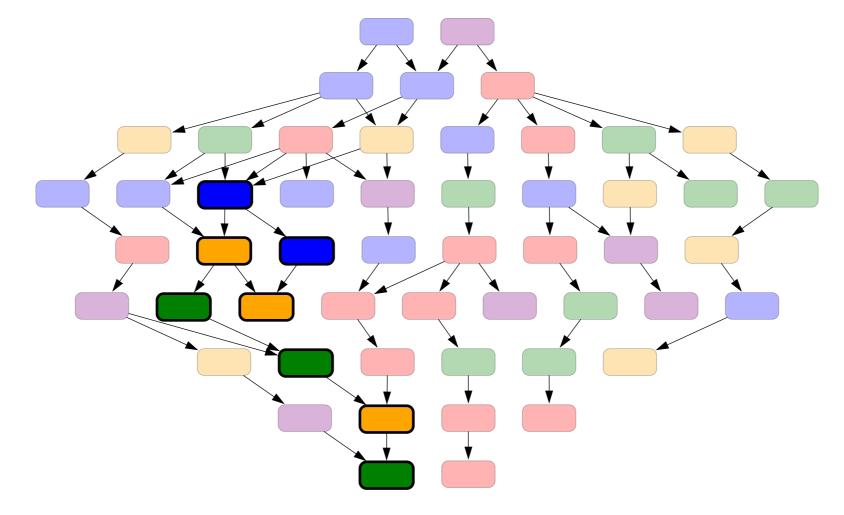


Real-world problems require efforts of entire community

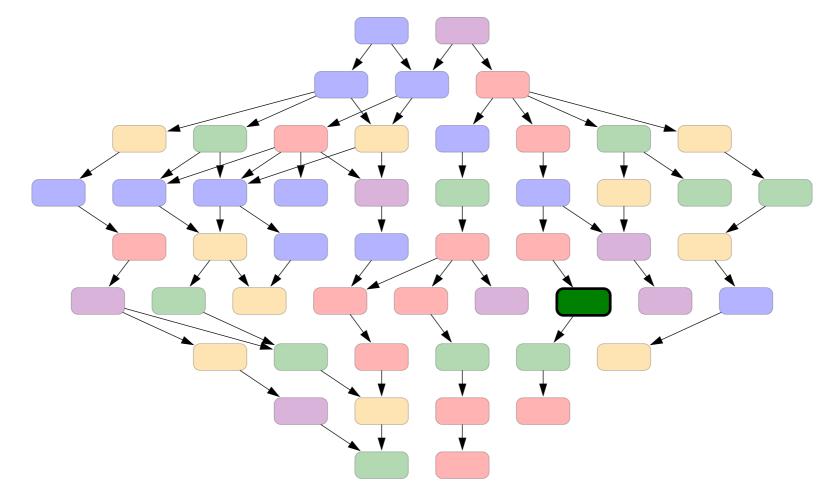

Real-world problems require efforts of entire community



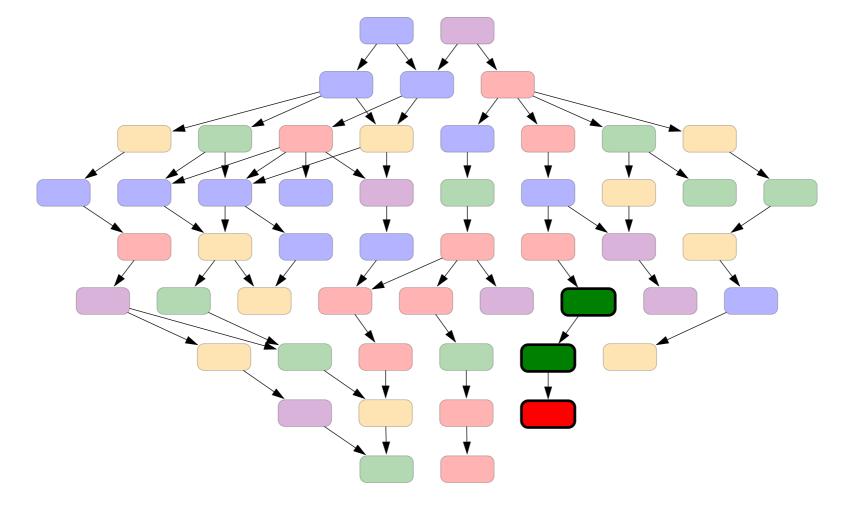
• Old way: use intermediate metrics, rhetoric



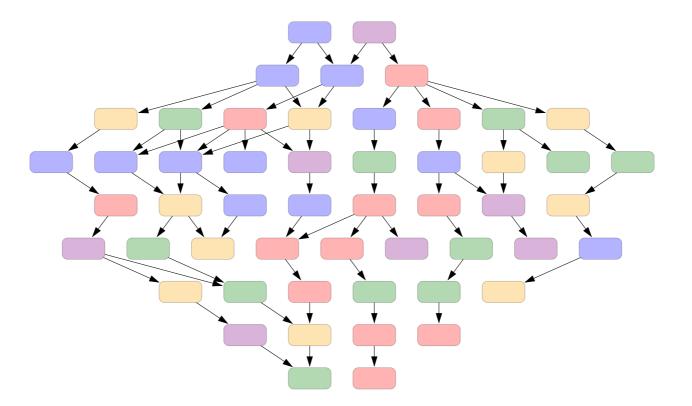
- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically



- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

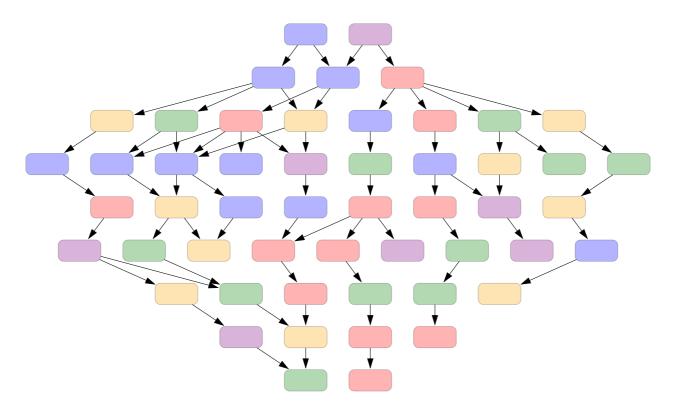


- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

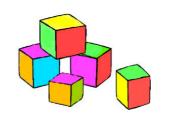


- Old way: use intermediate metrics, rhetoric
- New way: plug in and see ramifications automatically

Immutability



Inspiration: Git version control system


Immutability

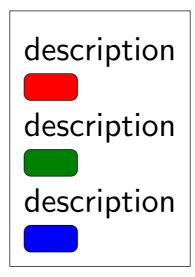
Inspiration: Git version control system

- All programs/datasets/runs are write-once
- Enable collaboration without chaos
- Capture the research process in a **reproducible** way

Bundles

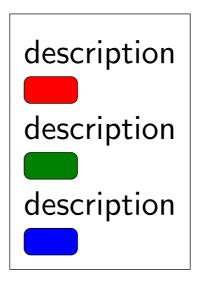
Worksheets

16


Bundle graphs are about **truth**; what about **interpretation**?

Bundle graphs are about **truth**; what about **interpretation**?

Worksheet: an arbitrary document with embedded bundles



Bundle graphs are about **truth**; what about **interpretation**?

Worksheet: an arbitrary document with embedded bundles

Inspiration: Mathematica notebook, Jupyter notebook

A worksheet

We now train the classifier with more data.

A worksheet

We now train the classifier with more data.

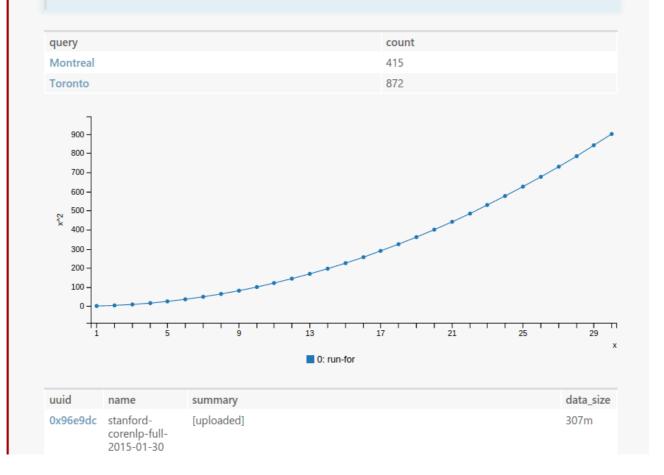
Program : **SVMlight** Arguments : -n 2000 Dataset : **thyroid** Error : 2.6% Time : 1 second

A worksheet

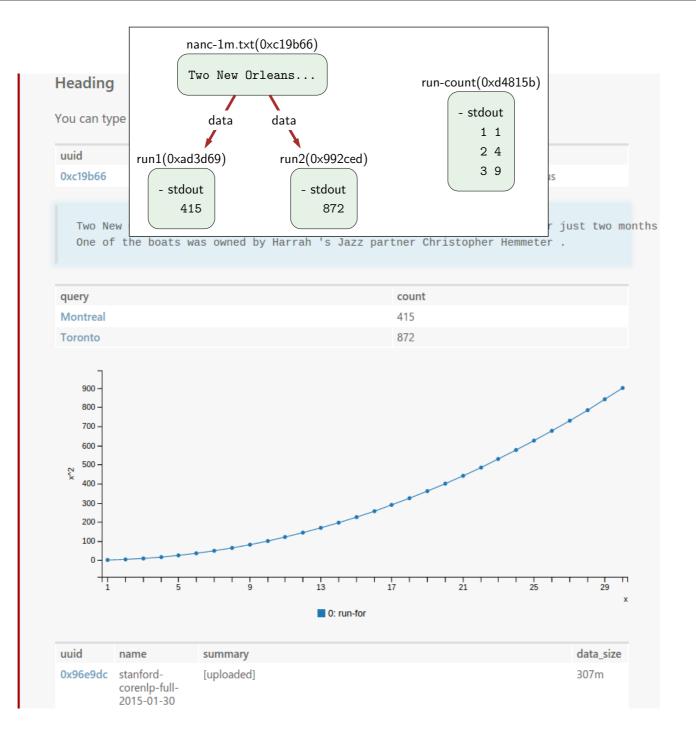
We now train the classifier with more data.

Program : **SVMlight** Arguments : -n 2000 Dataset : **thyroid** Error : 2.6% Time : 1 second

Notice that the error remains the same, suggesting that we've saturated our model.



Heading


You can type in **any** markdown with any ETEX.

uuid	name	summary	state	desc.
0xc19b66	nanc-1m.txt	[uploaded]	ready	1 million sentences from the NANC corpus

Two New Orleans riverboat casinos declared bankruptcy in early June after just two months One of the boats was owned by Harrah 's Jazz partner Christopher Hemmeter .

HeadingYou can typeuuid0xc19b66Two New0xc19b66Two NewTwo New	b) IS I just two months
## Heading	
You can type in **any** markdown with any \$MEX\$.	
[dataset nanc-1m.txt]{0xc19b6600afe74e91a441e6d13e823ead} — — — — — —	embed bundles
% display contents / maxlines=2 — — — — — — — — — — — — — — — — — — —	— — — <mark>render bundle contents</mark>
% schema mySchema — — — — — — — — — — — — — — — — — — —	— — — — — <mark>customize table schema</mark>
% add query command "s/.*grep / s/wc.*/"	
% add count /stdout	
% display table mySchema	
[run data:nanc-1m.txt : cat data grep Montreal wc -1]{0xad3d69e373eb4702ab89d	:4991aa0f82}
[run data:nanc-1m.txt : cat data grep Toronto wc -1]{0x992ced33e6e848aa8cfb89	38c12bb221}
% display graph /stdout xlabel=time ylabel=accuracy maxlines=30 — — — graph p	o <mark>ints in a TSV file</mark>
[run : for x in $\{150\}$; do echo -e " $x ((x*x))$; done] $\{0xd4815bf677bc4ab492a4c28$	744224c87}
Largest bundles:	
% display table uuid:uuid:[0:8] name summary data_size	
% search size=.sortlimit=3 — — — — — — — — — — — — — — — — —	embed search results

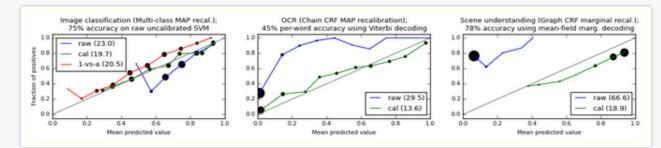
Use case: executable papers

Learning with Relaxed Supervision.

Jacob Steinhardt and Percy Liang.

Advances in Neural Information Processing Systems (NIPS), 2015.

Volodymyr Kuleshov and Percy Liang.


Calibrated Structured Prediction.

Advances in Neural Information Processing Systems (NIPS), 2015.

Structured prediction presents new challenges for calibration: the output space is large, and users may issue many types of probability queries (e.g., marginals) on the structured output. To address these challenges,

- We extend the notion of calibration so as to handle various subtleties pertaining to the structured setting, and then provide a simple recalibration method that trains a binary classifier to predict probabilities of interest.
- We explore a range of classifier features appropriate for structured recalibration, and demonstrate their efficacy on three real-world datasets.

uuid	na	me	description	bundle_type	created	dependencies	command	data_size	state
0xbef()82 rur bas			run	2015-10-30 21:57:09	b1:codalab,b2:data	bash b1/experiments/gen-data- fig1.sh b1 b2	913K	ready

The above figure shows that our predictions (green line) are well-calibrated in every setting. In the multiclass setting, we outperform an existing approach which individually recalibrates one-vs-all classifiers and normalizes their probability estimates. This suggests that recalibrating for a specific event (e.g. the highest scoring class) is better than first estimating all the multiclass probabilities.

ry, we unfortunately cannot make it available on CodaLab, but have a copy of SNOPT, the same scripts should work to install it (note: permissions; e-mail jsteinhardt@cs.stanford.edu if you need help

created	dependencies	command	data_size	state
kefile:				
d	dependencies	command	data_size	state
0-30 08:44:24			58.9K	ready

ble correctly:

dependencies	command	data_size	state
:src,:snopt	export SNOPT_HOME=snopt/snopt7; cp src/* .; make	323K	ready
bin/main		99.8K	ready

Use case: benchmarking results

predictions	#questions	avg recall	avg precision	f1 of avg R and avg P	avg f1 (accuracy)
webquestions-predictions-emnlp2013	2032	0.413	0.480	0.444	0.357
webquestions-predictions-acl2014	2032	0.466	0.405	0.433	0.399
webquestions-predictions-jhu-acl2014	2032	0.458	0.517	0.486	0.330
webquestions-predictions-jhu-acl2014-sp-workshop	2032	0.480	0.337	0.396	0.354
webquestions-predictions-msr2014	2032	0.525	0.447	0.483	0.453
webquestions-predictions-kitt-ai-naacl2015	2032	0.545	0.526	0.535	0.443
webquestions-predictions-aqqu-cikm2015	2032	0.604	0.498	0.546	0.494
webquestions-predictions-agenda-tacl2015	2032	0.557	0.505	0.530	0.497
webquestions-predictions-acl2015-msr-stagg	2032	0.607	0.528	0.565	0.525

If you have run your system on WebQuestions, please upload your predictions to your own worksheet (click 'My Worksheet'). Then type the following commands:

cl upload <webquestions-predictions-file> # Or just click 'Upload bundle'

cl macro webquestions/eval <webquestions-predictions-file> -n <webquestions-evaluation-file>

Use case: software tutorials

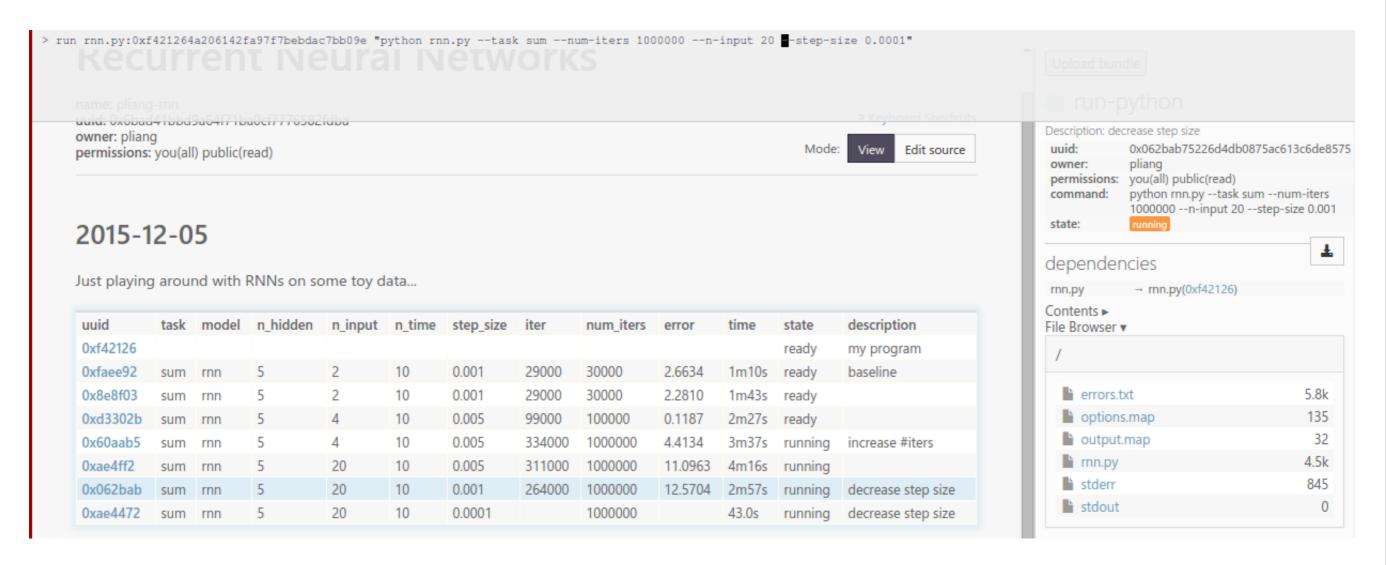
TensorFlow

name: tensorflow uuid: 0xf04bb563380d4049a72d297a87522678 owner: pliang permissions: you(all) public(read)

? Keyboard Shortcuts

Mode: View Edit source

TensorFlow is Google's new deep learning library. Conveniently, a docker image with all the dependencies has already been created, so to use TensorFlow in CodaLab, all you have to do is to upload your program and run it.


Example 1: artificial data

uuid		name	data_size	data_size		desc.	
0x543b83		tf-example.py	809	809			
uuid	name	summary	data_size	time	state	desc.	

Example 2: MNIST

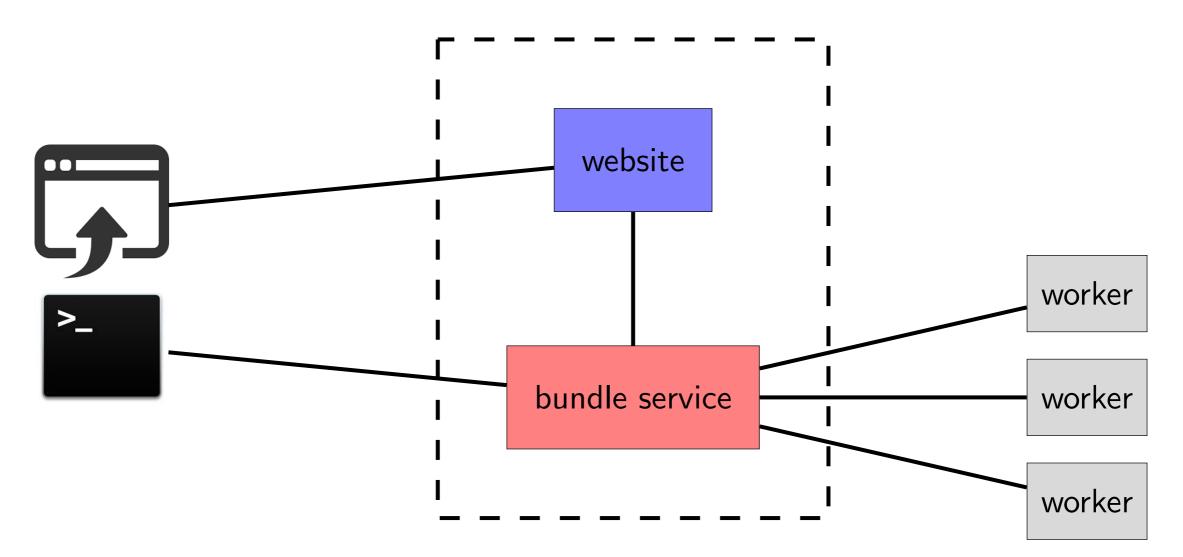
uuid	n	name			desc.			
0x447d9e	147d9e mnist		11.1m		classic digits dataset			
0x6d6d8d src		10.7k		simple linear classifier				
uuid	name	summary		(data_size	time	state	desc.
0x2ebd30	run-python	! python src{0x	6d}/linear.py		12.6k	33.0s	ready	run on GPUs

Use case: research development environment

Running your own CodaLab server

Check out the repo:

\$ git clone https://github.com/codalab/codalab-worksheets


Start the full stack:

\$ cd codalab-worksheets; ./codalab_service.py start

Try it out:

\$ open http://localhost

System architecture

Note: workers can be run by the user

Running your own CodaLab server

Check out the repo:

\$ git clone https://github.com/codalab/codalab-worksheets

Start the full stack:

\$ cd codalab-worksheets; ./codalab_service.py start

Try it out:

\$ open http://localhost

A case study...

SQuAD dataset for reading comprehension

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

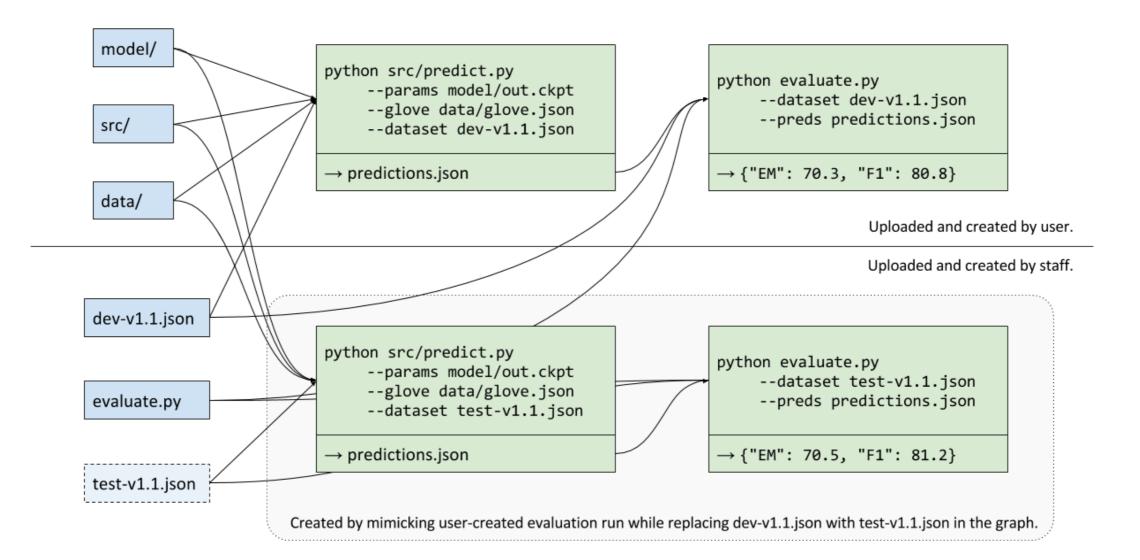
What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

SQuAD dataset for reading comprehension

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

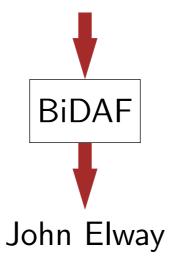

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Rank	Model	EM	F1
1 Sep 20, 2017	AIR-FusionNet (ensemble) Microsoft Business AI Solutions Team	78.842	85.936
2 Aug 16, 2017	DCN+ (ensemble) Salesforce Research	78.706	85.619
3 Jul 25, 2017	Interactive AoA Reader (ensemble) Joint Laboratory of HIT and iFLYTEK Research	77.845	85.297
3 Sep 01, 2017	r-net (ensemble) Microsoft Research Asia http://aka.ms/rnet	78.244	85.206
4 Aug 21, 2017	Reinforced Mnemonic Reader (ensemble) NUDT and Fudan University https://arxiv.org/abs/1705.02798	77.678	84.888
5 Sep 08, 2017	AIR-FusionNet (single model) Microsoft Business AI Solutions team	75.968	83.900
6 Jul 17, 2017	r-net (single model) Microsoft Research Asia http://aka.ms/rnet	75.705	83.496
6 Jul 14, 2017	smarnet (ensemble) Eigen Technology & Zhejiang University	75.989	83.475
7 Aug 18, 2017	Reg-RaSoR (single model) Google NY, Tel-Aviv University	75.789	83.261
8 Jul 10, 2017	DCN+ (single model) Salesforce Research	74.866	82.806
8	SLQA (ensemble model)	75.212	82.681

Must submit model on CodaLab to evaluate on test set

Evaluation using "mimic"

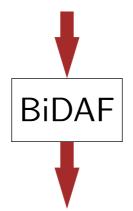


Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Mar 19, 2018	QANet (ensemble) Google Brain & CMU	83.877	89.737
2 May 10, 2018	MARS (ensemble) YUANFUDAO research NLP	83.520	89.612
3 Mar 06, 2018	QANet (ensemble) Google Brain & CMU	82.744	89.045
4 May 09, 2018	MARS (single model) YUANFUDAO research NLP	82.587	88.880
4 [Jan 22, 2018]	Hybrid AoA Reader (ensemble) Joint Laboratory of HIT and iFLYTEK Research	82.482	89.281
4 Feb 19, 2018	Reinforced Mnemonic Reader + A2D (ensemble model) Microsoft Research Asia & NUDT	82.849	88.764
5 [Jan 03, 2018]	r-net+ (ensemble) Microsoft Research Asia	82.650	88.493
5 Feb 02, 2018	Reinforced Mnemonic Reader (ensemble model) NUDT and Fudan University https://arxiv.org/abs/1705.02798	82.283	88.533
5 Feb 27, 2018	QANet (single model) Google Brain & CMU	82.209	88.608
5 Jan 05, 2018	SLQA+ (ensemble) Alibaba iDST NLP	82.440	88.607
6 Dec 17, 2017	r-net (ensemble) Microsoft Research Asia http://aka.ms/rnet	82.136	88.126

Adversarial evaluation

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest **quarterback** ever to play in a Super Bowl at age 39. The past record was held by **John Elway**, who led the Broncos to victory in **Super Bowl XXXIII** at age **38** and is currently Denver's Executive Vice President of Football Operations and General Manager.

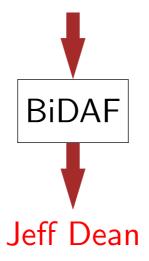
What is the name of the quarterback who was 38 in Super Bowl XXXIII?



Adversarial evaluation

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest **quarterback** ever to play in a Super Bowl at age 39. The past record was held by **John Elway**, who led the Broncos to victory in **Super Bowl XXXIII** at age **38** and is currently Denver's Executive Vice President of Football Operations and General Manager. Jeff Dean **is the name of the quarterback who was** 37 in Champ Bowl XXXIV.

What is the name of the quarterback who was 38 in Super Bowl XXXIII?



Adversarial evaluation

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest **quarterback** ever to play in a Super Bowl at age 39. The past record was held by **John Elway**, who led the Broncos to victory in **Super Bowl XXXIII** at age **38** and is currently Denver's Executive Vice President of Football Operations and General Manager. Jeff Dean **is the name of the quarterback who was** 37 in Champ Bowl XXXIV.

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Results on public models on CodaLab

Model	Original F1	Adversarial F1
ReasoNet-E	81.1	49.8
SEDT-E	80.1	46.5
BiDAF-E	80.0	46.9
Mnemonic-E	79.1	55.3
Ruminating	78.8	47.7
jNet	78.6	47.0
Mnemonic-S	78.5	56.0
ReasoNet-S	78.2	50.3
MPCM-S	77.0	50.0
RaSOR	76.2	49.5
BiDAF-S	75.5	45.7

Results on public models on CodaLab

Model	Original F1	Adversarial F1
ReasoNet-E	81.1	49.8
SEDT-E	80.1	46.5
BiDAF-E	80.0	46.9
Mnemonic-E	79.1	55.3
Ruminating	78.8	47.7
jNet	78.6	47.0
Mnemonic-S	78.5	56.0
ReasoNet-S	78.2	50.3
MPCM-S	77.0	50.0
RaSOR	76.2	49.5
BiDAF-S	75.5	45.7
Humans	92.6	89.2

New research enabled by CodaLab

Other competitions on CodaLab

- SQuAD [instructions]: question answering
- HotpotQA [instructions]: multi-hop question answering
- QAngaroo [instructions]: multi-hop question answering (WikiHop and MedHop)
- MultiRC [instructions]: multi-hop question answering
- CoQA [instructions]: conversational question answering
- QuAC [instructions]: conversational question answering
- ShARC [instructions]: conversational question answering
- QANTA [instructions]: question answering on Quizbowl
- KorQuAD [instructions]: Korean question answering
- RecipeQA [instructions]: multimodal comprehension of cooking recipes
- MRQA2019 [instructions]: question answering
- CMRC2018 [instructions]: Chinese question answering
- SMP2018 [instructions]: Chinese dialogue
- Spider [instructions]: semantic parsing
- COIN [instructions]: commonsense inference
- HYPE [instructions]: image generation
- CheXpert [instructions]: chest x-ray interpretation
- MURA [instructions]: bone x-ray interpretation

Note: separate from CodaLab Competitions

Final remarks

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure. You can connect your own worker or setup a local installation.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.
- **Q**: How is CodaLab different from releasing a VM?
- **A**: VMs are monolithic black boxes.

CodaLab bundles are immutable data/code modules that can be composed.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure.
 You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.
- **Q**: How is CodaLab different from releasing a VM?
- A: VMs are monolithic black boxes.

CodaLab bundles are immutable data/code modules that can be composed.

- **Q**: Why can't I just release my code on GitHub?
- A: Releasing code is a big step forward, but code has unspecified dependencies. CodaLab encapsulates these.

- **Q**: What programming language can I use?
- A: Anything: Python, C++, Java, Julia, etc.
 We run arbitrary Unix commands in a docker container.
- **Q**: What computing resources does CodaLab provide?
- A: worksheets.codalab.org uses Microsoft Azure. You can connect your own worker or setup a local installation.
- **Q**: How is CodaLab different from Jupyter notebook?
- A: Jupyter building blocks are notebooks (like worksheets) and are mutable. CodaLab building blocks are bundles and are immutable.
- **Q**: How is CodaLab different from releasing a VM?
- A: VMs are monolithic black boxes.
 CodaLab bundles are immutable data/code modules that can be composed.
- **Q**: Why can't I just release my code on GitHub?
- A: Releasing code is a big step forward, but code has unspecified dependencies. CodaLab encapsulates these.
- **Q**: What's the relationship to CodaLab Competitions?
- A: It's a sister project led by Isabelle Guyon.

Competitions brings people together and bundles/worksheets provides a rich foundation.

Open challenges

Reproducibility (community):

What's the incentive to upload an executable paper?

How do we encourage creation of reusable modules?

How do we build a community?

Open challenges

Reproducibility (community):

What's the incentive to upload an executable paper?

How do we encourage creation of reusable modules?

How do we build a community?

Productivity (individual):

Is there enough flexibility to support interactive development?

Can we scale to really large-scale experiments?

Tradeoff?

efficiency

reproducibility

Folk wisdom: reproducibility slows down research.

Tradeoff?

Folk wisdom: reproducibility slows down research.

Our claim: reproducibility accelerates research (with the right tool).