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Thank you to the organizers for supporting #Strike4BlackLives
e The work is not done!

Sameer Singh v
@sameer_

This is the followup of our earlier event that had been
canceled in support of #StrikedBlackLives.

@ Sameer Singh @sameer_- Jun 9

In support of #ShutDownSTEM and #ShutDownAcademia this Wednesday, we
have decided to postpone the event till further notice. If you're wondering
what to do with the time you now have on Wednesday, see
shutdownstem.com/action #Strike4BlackLives

12:51 PM - Sep 18, 2020 - Twitter Web App




Sameer Singh
@sameer._

Check out our Symposium on Reproducibility in
Machine Learning (9/22 9am-1pm PT), featuring
talks+panel w/ @KyleCranmer (NYU) @percyliang
(Stanford) @WonderMicky (Facebook)

@joavanschoren (TU/e+

@open_ml). Website: uci-ml-
repo.github.io/events/reprod-... Register (free):
forms.gle/rBobvVKQrirRPDG...

Kyle Cranmer

New k University,
Reusable Workflows, active learning, and simulation-based inference
* ¥ 1 will describe how two of my passions (machine learning and
X together. In the context of
cs, reprodt ility is a serious challenge as the data ana
al paper ir es large teams working with Progeneous
nts and loosely connected, informal workflows
a particularly high priority for n
at focused on reusing those workflows
nalysis platf
needed functionality. |

machine learning tools on top. f

Michela Paganini

Facebook earch

Reproducible Science of Deep Learning: The Pruning Case Study

Percy Liang

Stanford University and Codalab,
Codalab: A Platform for Efficient Collaborative Research

We are interested in solving two infrastructural problems in data-centric
fields such as machine learning: First, an inordinate amount of time is
spent on preprocessing datasets, getting other people's code to run,
writing evaluation/visualization scripts, with much of this effort
duplicated across different research groups. Second, a only static set of
final results are ever published, leaving it up to the reader to guess how the various
methods would fare in unreported scenarios. | will present Codal ab, a new platform
which aims to tackle these two problems by creating an online community around
sharing and executing immutable components called bundles, thereby streamlining the

research process.

Joaquin Vanschoren

Eindhoven University of Technology and OpenML,
Sharing and reproducing machine learning experiments with OpenML

Sharing machine learning experiments in a reproducible way is a lo

ork. However, what if we could automatically track every detail of

ning awa e experiments and share them together with our results? OpenML is a
pru .'1/75 away uniis or ¢

i A e o open online platform where one cannot only share datasets, but als
the of /) cture: J

information propagation in neural networks. I will argue that a entire machine experiments. It has integrations into many machine
1 learning libraries so that experiments run with these libraries are automatically shar
a fully reproducible way. This also means that the shared experiments can be used in

many innovative ways. This talk will cover what is possible today, our experiences wi

mental scientific understanding of the inne rkings of neural

networks is necessary to build a path towards robust, efficient Al, and | will introduce

open-source work that has tated the stig n of the be or of pruned models.

1 will high centralized, reusable pruning making experiments reproducible, as well as open problems and future plans.
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\ Kyle Cranmer e
" @KyleCranmer

7:29 AM - Sep 22, 2020 - Twitter Web App
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For more on the cropping issue, see: https://twitter.com/thuszar/status/1307982313012236288



https://twitter.com/fhuszar/status/1307982313012236288
https://twitter.com/fhuszar/status/1307982313012236288

\ Kyle Cranmer @KyleCranmer - Jun 10 v
‘ So now I'd like to circle back to the advice | got from @IBJIYONGI. She
pointed me to the work of Ruha Benjamin @ruha9 on "The New Jim
Code" which | took the time to partially absorb and reflect on.

O 1 (W) QO 1 0 1l

\ Kyle Cranmer v
‘ @KyleCranmer

Here is a section of the @ruha9's talk that directly
connects to the thread above... where the first wave of
popular discourse is shock that algorithms can be
biased. Followed by a second wave: "of course,
technology inherits it's creators biases"
youtu.be/JahO1-saibU?t=...

Problem Space: Racists Robots
'We have a problem’: Racist and sexist robots

Ruha Benjamin on "The New Jim Code? Race, Carceral Technoscience, and Liberatory Imagination"

N
Al robots are sexist and racist, experts

warn Wrtificial intelligence is increasingly |

:‘:;I:tx?::lst Al bots could deny you job, insurance & loans - Hgg SRTEPUBUCI SOME ALGORITHMS ARE
o .

ﬁﬁi

- ’n—---
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4:48 PM - Jun 10, 2020 - Twitter Web App

https://www.youtube.com/watch?v=JahO1-saibU&teature=youtu.be&t=1323


https://www.youtube.com/watch?v=JahO1-saibU&feature=youtu.be&t=1323
https://www.youtube.com/watch?v=JahO1-saibU&feature=youtu.be&t=1323

Kyle Cranmer
@KyleCranmer

3

And then a third phase "attempts to override or
address" the problems. What does that refer to in the
thread above? The attempts at algorithmic fairness.

This is roughly where | was in my understanding of the
Issue, but @ruha9 goes further... (watch video above)

4:59 PM - Jun 10, 2020 - Twitter Web App
Il View Tweet activity

2 Likes
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\ Kyle Cranmer @KyleCranmer - Jun 10

Replying to @KyleCranmer

She introduces these useful concepts.

(b) "default discrimination" is roughly connected to the issues one
would have due to bias in the training data without any attempt to

address it
youtu.be/JahO1-salbU?t=...

the new Jim code

(a) engineered inequity
(b) default discrimination
(c) coded exposure

(d) techno benevolence

O 1 () QO 1 Ty 1]
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Kyle Cranmer @KyleCranmer - Jun 10

And

(d) techno benevolence "names those designs that claim to address
bias of various sorts, but may still manage to reproduce or deepen
discrimination in part because of the narrow way in which fairness is
defined and operationalized."

youtu.be/JahO1-saibU?t=...

the new jim code

(a) engineered 1nequity
(b) default discrimination
(c) coded exposure

(d) techno benevolence
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Let us keep these issues in our minds
as we develop systems and technologies
that impact people






THE RIGGS BOSON

@ATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST



THE PLAYERS

forward modeling
generation
simulation

(z: latent variables)

0

parameters of interest
X

observed data

covariates
Vv

nuisance parameters

simulated data

inverse problem

measurement
parameter estimation



THE FORWARD MODEL
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! L, 1 )We begin with Quantum Field Theory
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Kinetic energies and self-interactions of the gauge hosons
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v g6+ CidRY ChhR t he) energy collisions
interactions hetween quarks and gluons fermion masses and couplings 1o Higgs

hierarchical: 2 = O(10) = O(100) particles

The interaction of outgoing particles
with the detector is simulated.
e+

>100 million sensors
e_

4 Finally, we run particle identification and

feature extraction algorithms on the simulated
data as if they were from real collisions.

~10-30 features describe interesting part

14



DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

| | | | 1 | | |
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Electron
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' Electromagnetic
);’ " Calorimeter
’

Iron return yoke interspersed
Transverse slice with Muon chambers

through CMS




DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorithms for what is called
likelihood-free inference (or simulation-based inference),
which only require ability to generate samples from the
simulation in the “"forward mode”



10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single summary statistic s(x)

e choosing a summary statistic (feature engineering) is a task for a skilled
physicist and tailored to the goal of measurement or new particle search

e likelihood p(s|0) approximated using histograms (univariate density estimation)

> A0F N
K r T T T T T T T Sk ATLAS Preliminary
ey: B
’ Nlluon o 35__ * Data *)
Eﬁ;:;oez Hadron (e.g. Pion) B r - Background ZZ. i
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through CMS a 200 400 [G \6/]00
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This doesn’t scale if x is high dimensional!



THUMBNAIL SKETCH OF ANALYSIS

In addition to defining a summary statistic, we detine a
complicated hierarchical filter (binary classifier) 1(x) that
operates on the high-dimensional data x to select data that
targets a particular alternate hypothesis. most of the work!

e Created by team of people, usually an ad hoc
computational “worktflow"”organized via email and

meetings




THUMBNAIL SKETCH OF ANALYSIS

In addition to defining a summary statistic, we detine a
complicated hierarchical filter (binary classifier) 1(x) that
operates on the high-dimensional data x to select data that
targets a particular alternate hypothesis. most of the work!

e Then we run simulated collisions through the pipeline to
make the prediction for the null or “background-only”

hypothesis

predicted distribution for the null




THUMBNAIL SKETCH OF ANALYSIS

In addition to defining a summary statistic, we detine a
complicated hierarchical filter (binary classifier) 1(x) that
operates on the high-dimensional data x to select data that

targets a particular alternate hypothesis.

e Then we run simulated collisions for a hypothetical
particle or interaction to make the prediction for
alternate or “signal-plus-background” model (a mixture model)

A

~ easy

a

predicted distribution for the alternate in Model A




THUMBNAIL SKETCH OF ANALYSIS

In addition to defining a summary statistic, we detine a
complicated hierarchical filter (binary classifier) 1(x) that
operates on the high-dimensional data x to select data that

targets a particular alternate hypothesis.

e Then we add the observed data

A

A

observed data + predicted distribution for the alternate in Model A




THUMBNAIL SKETCH OF ANALYSIS

In addition to defining a summary statistic, we detine a
complicated hierarchical filter (binary classifier) 1(x) that
operates on the high-dimensional data x to select data that

targets a particular alternate hypothesis.

e And finally we test the hypothesis

A

. Model A Rejected
S

observed data + predicted distribution for the alternate in Model A




THUMBNAIL SKETCH OF ANALYSIS

In addition to defining a summary statistic, we detine a
complicated hierarchical filter (binary classifier) 1(x) that
operates on the high-dimensional data x to select data that

targets a particular alternate hypothesis.

e And we write a paper, graduate students graduate, code
rots, and it would be difficult to reproduce

A

. Model A Rejected
S

observed data + predicted distribution for the alternate in Model A
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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RESPONSES / POSSIBLE SOLUTIONS

1) It's not a problem now, the experiments are testing all the
theoretical models that really matter, people just need to be
patient.

BUT maybe there will be some new idea later and we shoulo
make sure we preserve the data and tools to analyze it.

2) It is a problem, and the solution is to embrace Open Data

3) It is a problem, and there is a technical solution

26



REINTERPRETATION

It we can capture the definition of the summary s(x) and the
event selection filter (binary classifier) 1(x) then we can
reuse the existing analysis (prediction for the null and

observation in the data)

e \We just need to run simulated events for Model B
through the pipeline and test the new
signal+background alternate hypothesis

A A

. Model A Rejected *
S —

observed data + predicted distribution for the alternate in Model A -+ Model B

Model B rejected




THEORY
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kinetic energies and self-interactions of the gauge bosons
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We proposed RECAST framework in Oct 2010

e Conservative narrative compared

to “open data” '

 Not totally general, it targets recast
specific high-value use cases

e Not conservative enough for
RECAST

Extending the Impact of Existing Analyses

many. Lots of resistance

e People said it couldn’t be done,

Kyle Cranmer and Itay Yavin

our workflows are too complicated Coter o Cosmotryand Parice Pysics, Dot of iy, e Yr

University, New York, NY 10003

e Hard to get effort to work on it.

ABSTRACT: Searches for new physics by experimental collaborations represent a significant
investment in time and resources. Often these searches are sensitive to a broader class of
models than they were originally designed to test. We aim to extend the impact of existing
searches through a technique we call recasting. After considering several examples, which
illustrate the issues and subtleties involved, we present RECAST, a framework designed
to facilitate the usage of this technique.

e — R

Orig Proposal in 2010: [arXiv.org:1010.2506]



https://arxiv.org/abs/1010.2506
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DATA PRESERVATION https://arxiv.org/abs/1205.4667
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Preservation Model Use case
1. Provide additional documentation

Publication-related information search

2. Preserve the data in a simplified format | Outreach, simple training analyses

3. Preserve the analysis level software Full scientific analysis based on existing
and data format reconstruction

4. Preserve the reconstruction and
simulation software and basic level data

Full potential of the experimental data

Table 3: Various preservation models, listed in order of increasing complexity.




OPEN DATA

open Help  About ~
CERN

Explore more than two petabytes
of open data from particle physics! -~

IStart typing... l
search examples: collision datasets, keywords:education, energy:7TeV /
[ J
e d
CMS x Sort by: Best match asc. Display: detailed 20 results
include on-demand datasets Found 3964 results.
Filter by type
v (| Dataset 1153
) Collision 134 About CMS
Derived 136 The Compact Muon Solenoid (CMS) Experiment is one of the large particle detectors at CERN's
Simulated 883 Large Hadron Collider. The CMS Collaboration consists of more than 3000 scientists, engineers,
v [/ Documentation Ch technicians and students from 180+ institutes and universities from 40+ countries.
| About 3
Aciviies - Lioou [ ovs
Authors 3
) Guide e Getting Started with CMS 2010 Open Data
_ I Hel 2
P To analyse CMS data collected in 2010, you need version 4.2.8 of CMSSW, supported only on
Policy 2 Scientific Linux 5. If you are unfamiliar with Linux, take a look at this short introduction to Linux or
Report ! try this...
v (] Environment 23

" Condition o  Guide ] cws ] Getiing Started




A CASE STUDY WITH OPEN DATA

MIT-CTP 4890

Jet Substructure Studies with CMS Open Data

Aashish Tripathee,!** Wei Xue,!"T Andrew Larkoski,? ¥ Simone Marzani,> ¥ and Jesse Thaler® ¥

L Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Physics Department, Reed College, Portland, OR 97202, USA
3 University at Buffalo, The State University of New York, Buffalo, NY 14260-1500, USA

We use public data from the CMS experiment to study the 2-prong substructure of jets. The
CMS Open Data is based on 31.8 pb™! of 7 TeV proton-proton collisions recorded at the Large
Hadron Collider in 2010, yielding a sample of 768,687 events containing a high-quality central jet
with transverse momentum larger than 85 GeV. Using CMS’s particle flow reconstruction algorithm
to obtain jet constituents, we extract the 2-prong substructure of the leading jet using soft drop
declustering. We find good agreement between results obtained from the CMS Open Data and
those obtained from parton shower generators, and we also compare to analytic jet substructure
calculations performed to modified leading-logarithmic accuracy. Although the 2010 CMS Open
Data does not include simulated data to help estimate systematic uncertainties, we use track-only
observables to validate these substructure studies.

Challenges:
* Slow development cycle
e Scattered documentation

e |Lack of validation
examples

e |nformation Overload

V. ADVICE TO THE COMMUNITY

From a physics perspective, our experience with the
CMS Open Data was fantastic. With PFCs, one can
essentially perform the same kinds of four-vector-based
analyses on real data as one would perform on collisions
from parton shower generators. Using open data has the
potential to accelerate scientific progress (pun intended)
by allowing scientists outside of the official detector col-
laborations to pursue innovative analysis techniques. We
hope that our jet substructure studies have demonstrated
both the value in releasing public data and the enthu-
siasm of potential external users. We encourage other
members of the particle physics community to take ad-
vantage of this unique data set.

From a technical perspective, though, we encountered
a number of challenges. Some of these challenges were
simply a result of our unfamiliarity with the CMSSW
framework and the steep learning curve faced when try-
ing to properly parse the AOD file format. Some of these
challenges are faced every day by LHC experimentalists,
and it is perhaps unreasonable to expect external users to
have an easier time than collaboration members. Some
of these challenges (particularly the issue of detector-
simulated samples) have been partially addressed by the
2011A CMS Open Data release [215]. That said, we sus-
pect that some issues were not anticipated by the CMS
Open Data project, and we worry that they have deterred
other analysis teams who might have otherwise found in-
teresting uses for open data. Therefore, we think it is
useful to highlight the primary challenges we faced, fol-
lowed by specific recommendations for how potentially to
address them.

A. Challenges

Here are the main issues that we faced in performing
the analyses in this paper.

e Slow development cycle. As CMSSW novices, we
often needed to perform run-time debugging to fig-
ure out how specific functions worked. There were
two elements of the CMSSW workflow that intro-
duced a considerable lag between starting a job and
getting debugging feedback. The first is that, when
using the XROOTD interface, one has to face the
constant overhead (and inconstant network perfor-
mance) of retrieving data remotely. The second is
that, as a standard part of every CMS analysis, one
has to load configuration files into memory. Load-
ing FrontierConditions GlobalTag cff (which
is necessary to get proper trigger prescale values)
takes around 10 minutes at the start of a run. For
most users, this delay alone would be too high of a
barrier for using the CMS Open Data. By down-
loading the AOD files directly and building our own
MOD file format, we were able to speed up the

https://arxiv.org/abs/1704.05842

21

development cycle through a lightweight analysis
framework. Still, creating the MODPRODUCER in
the first place required a fair amount of trial, error,
and frustration.

e Scattered documentation. Though the CMS Open
Data uses an old version of CMSSW (v4.2 com-
pared to the latest v9.0), there is still plenty of
relevant documentation available online. The main
challenge is that it is scattered in multiple places,
including online TWIKI pages, masterclass lec-
tures, thesis presentations, and GITHUB reposi-
tories. Eventually, with help from CMS insiders,
we were able to figure out which information was
relevant to a particular question, but we would
have benefitted from more centralized documenta-
tion that highlighted the most important features
of the CMS Open Data. Centralized documenta-
tion would undoubtably help CMS collaboration
members as well, as would making more TWIKI
pages accessible outside of the CERN authentica-
tion wall.

e Lack of validation examples. When working with
public data, one would like to validate that one is
doing a sensible analysis by trying to match pub-
lished results. While example files were provided,
none of them (to our knowledge) involved the com-
plications present in a real analysis, such as appro-
priate trigger selection, jet quality criteria, and jet
energy corrections. Initially, we had hoped to re-
produce the jet py spectrum measured by CMS on
2010 data [263], but that turned out to be surpris-
ingly difficult, since very low pr jet triggers are not
contained in the Jet Primary Dataset, and we were
not confident in our ability to merge information
from the MinimumBias Primary Dataset. (In ad-
dition, the published CMS result is based on inclu-
sive jet pr spectra, while we restricted our analysis
to the hardest jet in an event to simplify trigger
assignment.) Ideally, one should be able to per-
form event-by-event validation with the CMS Open
Data, especially if there are important calibration
steps that could be missed.!3

e Information overload. The AOD files contains an
incredible wealth of information, such that the ma-
jority of official CMS analyses can use the AOD
format directly without requiring RAW or RECO
information. While ideal for archival purposes, it
is an overload of information for external users, es-
pecially because some information is effectively du-
plicated. The main reason we introduced the MOD

13 In the one case where we thought it would be the most straight-
forward to cross check results, namely the luminosity study in
Fig. 2, it was frustrating to later learn that the AOD files con-
tained insufficient information.



BUILD IT AND THEY WILL COME

| got lucky with an amazing student

that took a risk and just built it. recast

Lukas Heinrich

e Containers & Cloud technology

S
e Small amount of support from ggg L rvern o \/
NSF

11th August 2019

RECAST framework reinterpretation of an ATLAS
Dark Matter Search constraining a model of a dark
Higgs boson decaying to two b-quarks

Reproducibility is a byproduct! The ATLAS Colboraon

e 9years later ...

. . The reinterpretation of a search for dark matter produced in association with a Higgs boson

R e u S e p rO V I d e S a 'FO rW a rd — | O O |< I n g decaying to b-quarks performed with RECAST, a software framework designed to facilitate

the reinterpretation of existing searches for new physics, is presented. Reinterpretation using

RECAST is enabled through the sustainable preservation of the original data analysis as

. . . of o re-executable declarative workflows using modern cloud technologies and integrated with the

n a r r a ‘t I V e W h I | e re p ro d u C I b | | I 'ty wider CERN Analysis Preservation efforts. The reinterpretation targets a model predicting

I dark matter production in association with a hypothetical dark Higgs boson decaying into

b-quarks where the mass of the dark Higgs boson m is a free parameter, necessitating a

faithful reinterpretation of the analysis. The dataset has an integrated luminosity of 79.8 b!

and was recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass

energy of 4/s = 13 TeV. Constraints on the parameter space of the dark Higgs model for a

fixed choice of dark matter mass m,, =200 GeV exclude model configurations with a mediator
mass up to 3.2 TeV.

often perceived as backward-

@‘ ATL-PHYS-PUB-2019-032

s\ |12 August 2019

looking

L] L] L] L]
Analysis Preservation distinct from
reproducibility I e S e

Orig Proposal in 2010: [arXiv.org:1010.2506]
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SHIFTING FROM REPRODUCIBILITY TO REUSE

nature

physics

Corrected: Publisher Correction

PERSPECTIVE

https://doi.org/10.1038/541567-018-0342-2

OPEN

Open is not enough

Xiaoli Chen'?, Siinje Dallmeier-Tiessen™, Robin Dasler'", Sebastian Feger'3, Pamfilos Fokianos',
JoseBenito Gonzalez', HarriHirvonsalo*'?, Dinos Kousidis', Artemis Lavasa', Salvatore Mele',
Diego Rodriguez Rodriguez', Tibor Simko™, Tim Smith', Ana Trisovic>*, Anna Trzcinska',
loannis Tsanaktsidis', Markus Zimmermann', Kyle Cranmer®, Lukas Heinrich®, Gordon Watts’,
Michael Hildreth8, LaraLloret Iglesias®, KatiLassila-Perini* and Sebastian Neubert™

The solutions adopted by the high-energy physics community to foster reproducible research are examples of best practices
that could be embraced more widely. This first experience suggests that reproducibility requires going beyond openness.

e Reuse provides a forward-looking
narrative, while reproducibility often
perceived as backward-looking

e Reproducibility is a byproduct!

e Analysis Preservation distinct from
reproducibility

e Helps with onboarding

e Empowers reuse, remixing,
reproducibility

e |Improves efficiency & equity
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Fig. 2 | Example of a complex computational workflow on REANA mimicking a beyond the standard model (BSM) analysis . This figure shows an
example where the experimental data is compared to the predictions of the standard model with an additional hypothesized signal component. The
example permits one to study the complex computational workflows used in typical particle physics analyses. a-¢, The computational workflow (a) may
consist of several tens of thousands of computational steps that are massively parallelizable and run in a cascading ‘map-reduce’ style of computations
on distributed compute clusters. The workflow definition is modelled using the Yadage workflow specification and produces an upper limit on the
signal strength of the BSM process. A typical search for BSM physics consists of simulating a hypothetical signal process (¢), as well as the background
processes predicted by the standard model with properties consistent with the hypothetical signal (marked dark green in (b)). The background often
consists of simulated background estimates (dark blue and light green histograms) and data-driven background estimates (light blue histogram).

A statistical model involving both signal (dark green histogram) and background components is built and fit to the observed experimental data (black
markers). b, Results of the model in its pre-fit configuration at nominal signal strength. We can see the excess of the signal over data, meaning that the
nominal setting does not describe the data well. The post-fit distribution would scale down the signal in order to fit the data. This REANA example is
publicly available at ref. *>. For icon credits, see Fig. 1.
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reana

Reproducible research data analysis platform

Flexible Scalable Reusable Free
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A | Collaboration | Analyses | Analysis 1

COLLABORATION WANSENNYILR!

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh
elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla. Class
aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc.
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SPINOFFS

Generalize pattern: domain-specitic User Interface around
common database of workflows with some backend
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https://github.com/scailfin/flowserv-core
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Web User Interface

Reproducible Open Benchmarks

< (OB

O B Top Tagger Demo - ML4Jets

= Instructions TreeNiN - Submit New Run X

Reproducible
Open Benchmarks

@  Current Results Environment (Pre-Processing) *
heikomueller/toptaggerdemo:1.1
Submissions
Comma Pre-Proce

= )
=l TreeNiN python code/preprocess-dataset.py data/test_jets.pkl data/preprocess/ results/

@  Create Submission ... e

heikomueller/toptaggerdemo:1.1

reeNiN

Com an ML) *
>  Submit New Run ... i .
python code/TreeNiN.py results/processed_test_jets.pkl data/evaluate/ results/

[+ Input Files

—_ L SUBMIT CANCEL
[ ] Delete Submission

Reproducible Open Benchmarks

OB

Top Tagger Demo - ML4Jets

= Instructions

Background rejection (at 50%) Background rejection (STD) AUC
[ Carentfesits The SCAILFIN Proj
SuperNet 323.333000 39.600100 0.983995 e rOJ ect
My Submissions . ) )
TreeNiN 242500000 13.857100 0.983987 scailfin.github.io
- H SimpleNet
SimpleNet 99.552600 9.379710 0.958746
- H SuperNet
-H TreeNiN
@  Create Submission ...
—— SimpleNet
SuperNet
104 —-- TreeNiN
=
c
O -
2
8 103
[}
—_
e
c
=]
o
o 102
2w
@
@ Heiko Miiller Sebastian Macaluso
[




TRAINING

Encouraging response by

the community

Instructors Danika MacDonnel and Giordon Stark working with

participants. Photo Credit: Samuel Meehan.

11111111111
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Participants in Analysis Preservation Bootcamp showing off their ability to
reproduce an LHC analysis. Photo Credit: Samuel Meehan



Rewind...



DETECTOR SIMULATION

Conceptually: Prob(detector response | particles)
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

I I I I 1 1 1 1
om im 2m 3m am 5m 6m m
Key:

Muon

Electron

Charged Hadron (e.g. Pion)

= = = - Neutral Hadron (e.g. Neutron)
----- Photon

Electromagnetic
)”' Calorimeter

Superconducting
Calorimeter Solenoid

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS

L —

This motivates a new class of algorithms for what is called
likelihood-free inference (or simulation-based inference),

which only require ability to generate samples from the
simulation in the “forward mode”

L —

10® SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single summary statistic s(x)

e choosing a summary statistic (feature engineering) is a task for a skilled
physicist and tailored to the goal of measurement or new particle search

e likelihood p(s|B) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!
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K.C., J. Brehmer, G. Louppe [arXiv:1911.01429]

SIMULATION-BASED INFERENCE
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Many areas of science have simulations based on
some well-motivated mechanistic model.

A
s However, the aggregate effect of many interactions
% . between these low-level components leads to an
k= g intractable inverse problem.
3 < &
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B P\G{Ne\eam\“g that describe emergent macroscopic
simulation-based ohenomena that are tied back to the low-level
fithods microscopic (reductionist) model
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ML-POWERED SIMULATION-BASED INFERENCE
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Simulation Machine Learning Inference
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Viewpoint: Fast-Forwarding the Search EEESEECIER
for New Particles

Daniel Whiteson, Department of Physics and Astronomy, University of California, Irvine, USA

Constraining Effective Field Theories with
Machine Learning

Johann Brehmer, Kyle Cranmer, Gilles Louppe,
and Juan Pavez

Heiko Miiller i i Johann Brehmer
A proposed machine-learning approach could speed up the analysis that underlies searches for new particles Phys. Rev. Lett. 121,111801 (2018) Irina Espejo
in high-energy collisions. Published September 12,2018

Read PDF

September 12,2018 -« Physics 11,90

arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
physics.aps.org/articles/v11/90

A guide to constraining effective field
theories with machine learning

Johann Brehmer, Kyle Cranmer, Gilles Louppe,
and Juan Pavez

Phys. Rev. D 98, 052004 (2018)
Published September 12,2018

Sinclert Pérez Felix Kling
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MADMINER

Domain-specific
software for likelihood-
free inference

Integrated into REANA
workflow system

Tutorial in
JupyterBooks, can run
using Binder

MadMiner Tutorial

Introduction

MadMiner Tutorial

Preliminaries
Overview

Define process to study *
Morphing
Interactive Morphing Demo
Create training data
Set MadGraph Directory
Parton Level *
With Delphes
Train model
Likelihood Ratio *
Score *
Likelihood
Statistical Analysis
Limits on EFT parameters *
Fisher Information
Information Geometry

Congratulations

https://cranmer.github.io/madminer-tutorial/

« =2

INtroduction

MadMiner tutorial

This is a tutorial on MadMiner developed by Johann Brehmer, Felix Kling, Irina Espejo,
and Kyle Cranmer. It is built using Jupyter Book.

parameter

0 i
l observable
z

latent N\ # > T >

\‘g — r(z, 2]0)
4 argmin L[g] — 7(2|0) —»
— (2, 2|0) ——— 9 approximate
likelihood
ratio 9,

augmented data

Simulation Machine Learning Inference

Introduction to MadMiner

Particle physics processes are usually modelled with complex Monte-Carlo
simulations of the hard process, parton shower, and detector interactions. These
simulators typically do not admit a tractable likelihood function: given a (potentially
high-dimensional) set of observables, it is usually not possible to calculate the
probability of these observables for some model parameters. Particle physicisists
usually tackle this problem of "likelihood-free inference” by hand-picking a few
"good"” observables or summary statistics and filling histograms of them. But this
conventional approach discards the information in all other observables and often
does not scale well to high-dimensional problems.

In the three publications “Constraining Effective Field Theories With Machine
Learning”, "A Guide to Constraining Effective Field Theories With Machine Learning”,
and “Mining gold from implicit models to improve likelihood-free inference”, a new
approach has been developed. In a nut shell, additional information is extracted from
the simulations that is closely related to the matrix elements that determine the hard
process. This “augmented data” can be used to train neural networks to efficiently
approximate arbitrary likelihood ratios. We playfully call this process “mining gold”
from the simulator, since this information may be hard to get, but turns out to be very
valuable for inference.
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REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

perform experiment,
gather data
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SYNTHESIS

experimental design / active learning / black box optimization

Active Sciencing

simulation-based /
likelihood-free

inference engines

reusable workflows
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Demo for YComb research

0 Kyle Cranmer @KyleCranmer - Jun 11, 2017

active learning + workflows + implicit models = #ActiveSciencing

@lukasheinrich_ @glouppe
github.com/cranmer/active...
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Danilo J. Rezende @DeepSpiker - Jul 19, 2017
% ; This is great!
O 1 () Q 3 w
\ Kyle Cranmer @KyleCranmer - Jul 19, 2017
‘ Thanks!!!
O 1 (W QO 2 o 1l

4 Danilo J. Rezende
y @DeepSpiker

Replying to @KyleCranmer @lukasheinrich_ and @glouppe

You have the full loop of the scientific method in a python

notebook :)

3:12 PM - Jul 19, 2017 - Twitter for iPhone

Reality check...

Keep in mind that

- the simulator model was specified
- the space of experimental
configurations was well specified

Still it was hard enough!
Going to open world of

experimental configurations and
potential models much harder.
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DIFFERENTIABLE WORKFLOWS

We are now working on differentiable workflows where
gradients are passed through ditterent processes workflow system

Differentiable Programming in High-Energy Physics

Atihm Giines Baydin (Oxford), Kyle Cranmer (NYU), Matthew Feickert (UIUC),
Lindsey Gray (FermiLab), Lukas Heinrich (CERN), Alexander Held (NYU)
Andrew Melo (Vanderbilt) Mark Neubauer (UIUC), Jannicke Pearkes (Stanford),
Nathan Simpson (Lund), Nick Smith (FermiLab), Giordon Stark (UCSC),
Savannah Thais (Princeton), Vassil Vassilev (Princeton), Gordon Watts (U. Washington)

August 31, 2020

Abstract

A key component to the success of deep learning is the use of gradient-based optimization. Deep
learning practitioners compose a variety of modules together to build a complex computational pipeline
that may depend on millions or billions of parameters. Differentiating such functions is enabled through
a computational technique known as automatic differentiation. The success of deep learning has led to an
abstraction known as differentiable programming, which is being promoted to a first-class citizen in
many programming languages and data analysis frameworks. This often involves replacing some common
non-differentiable operations (eg. binning, sorting) with relaxed, differentiable analogues. The result is
a system that can be optimized from end-to-end using efficient gradient-based optimization algorithms.
A differentiable analysis could be optimized in this way — basic cuts to final fits all taking into account
full systematic errors and automatically analyzed. This Snowmass LOI outlines the potential advantages
and challenges of adopting a differentiable programming paradigm in high-energy physics.
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CONCLUSIONS

Traditional narrative around reproducibility has been
inefficient in changing practice

e Seen as backward-looking, inefficient, irrelevant

Target reuse and preservation

e Start with specific, high-value use-cases in community,
then generalize around that

e Reproducibility a byproduct
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«. Research Scientist at Google Brain
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EXPECTED INFORMATION GAIN eD”St‘“Tfa"

Active Learning & Control

Given data points {x, ¥}, how to select the next data point to fit the model?

Ex. Select data points which maximize expected information gain. [Lindley et al. 1956;
Mackay 1992; Houthooft et al. 2016]

arg 1max H[0|D] ywp(yl:nD) 0|y, X D]

Uncertainty determines which x is most informative and, therefore, the model’s
success.

[Hafner et al., 2019]

Slide from Dustin Tran at Hammers & Nails 2019



Challenge: Auto-diff across systems
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